Reg. No:						
----------	--	--	--	--	--	--

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

MCA I Year I Semester Regular Examinations July- 2021 DISCRETE MATHEMATICS

	Time: 3 hours	Max. M	larks: 60						
	(Answer all Five Units $5 \times 12 = 60$ Marks)								
	UNIT-I	Τ.1	O.F.						
1	a What is logical equivalence? Explain with an example. b Construct the truth table to show that $\neg p \land (Q \land P)$ is a contradiction.	L1 L6	6M 6M						
	OR								
2	a Show that PVQ follows from P .	L2	6M						
	b Define Maxterms and Minterms of P & Q and give their truth tables.	L1	6M						
3	Let $A=\{1,2,3,4\}$ and let $R=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}$ be an equivalence relation on R. Determine A/R.	L3	12M						
	OR								
4	a If $f: A \to B, g: B \to C, h: C \to D$ then prove that ho(gof)=(hog)of	L2	6M						
	b Show that the binary operation * defined on $(R,*)$ where $x*y=x^y$ is not associative. UNIT-III	L2	6M						
5	a Explain Pigeon hole principle and give an example.	L2	6M						
	b Find how many integers between 1 and 60 that are divisible by 2 nor by 3 and nor by 5. Also determine the number of integers divisible by 5 not by 2, not by 3.								
,	OR a Find the coefficient of (i) $x^3y^2z^2$ in $(2x-y+z)^9$ (ii) x^2y^4 in $(x-2y)^6$	т 2	CM.						
6	b Find the minimum number of students in a class to be sure that 4 out of them are	L3	6M						
	born on the same month?	L5	6M						
	UNIT-IV								
7	a Determine the sequence generated by i) $f(x) = 2 e^x + 3 x^2$ ii) $f(x) = e^{8x} - 4 e^{3x}$	L6	6M						
	b Solve $a_n = a_{n-1} + 2a_{n-2}$, $n \ge 2$ with initial condition $a_0 = 0$, $a_1 = 1$.	L6	6M						
0	OR								
8	Solve $a_n - 5a_{n-1} + 6a_{n-2} = 2^n$, $n \ge 2$ with initial conditions $a_0 = 1$, $a_0 = 1$, using	L6	12M						
	generating functions. UNIT-V								
9	a Define Spanning tree and Hamiltonian graph.	L1	6 M						
	b Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{2}$	L2	6M						
OR									
10	Explain Depth-First-Search, Breadth-First-Search Algorithm.	L2	12M						